Instructions.end_asm_instructions()

Returns an Instructions object for the 'end assembly' instructions.

end_loop_instructions() β†’ Instructions

Query Example

from glider import *

def query():
  instructions = Instructions().end_asm_instructions().exec(1)
  
  return instructions

Output Example

{
    "contract": "0xa4915dc6ee2652c471397c32ce5c8d3494ef3e6c"
    "contract_name": "Math"
    "sol_function":
                function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                                // The surrounding unchecked block does not change this fact.
                                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                                return prod0 / denominator;
                            }
                
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1, "Math: mulDiv overflow");
                
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
    "sol_instruction":
        assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
}

Last updated